
HEAP SORT

HEAP

A heap is a data structure that stores a
collection of objects (with keys), and has
the following properties:

 Complete Binary tree

 Heap Order

It is implemented as an array where each
node in the tree corresponds to an element
of the array.

HEAP

 The binary heap data structures is an array that

can be viewed as a complete binary tree. Each

node of the binary tree corresponds to an element

of the array. The array is completely filled on all

levels except possibly lowest.

19

12 16

41 7

1619 1 412 7

Array A

HEAP

 The root of the tree A[1] and given index i of a

node, the indices of its parent, left child and right

child can be computed

PARENT (i)

return floor(i/2)

LEFT (i)

return 2i

RIGHT (i)

return 2i + 1

HEAP ORDER PROPERTY

 For every node v, other than the root, the key

stored in v is greater or equal (smaller or equal

for max heap) than the key stored in the parent

of v.

 In this case the maximum value is stored in the

root

DEFINITION

 Max Heap

 Store data in ascending order

 Has property of

A[Parent(i)] ≥ A[i]

 Min Heap

 Store data in descending order

 Has property of

A[Parent(i)] ≤ A[i]

MAX HEAP EXAMPLE

1619 1 412 7

Array A

19

12 16

41 7

MIN HEAP EXAMPLE

127 191641

Array A

1

4 16

127 19

INSERTION

 Algorithm
1. Add the new element to the next available position at

the lowest level

2. Restore the max-heap property if violated

 General strategy is percolate up (or bubble up): if the
parent of the element is smaller than the element, then
interchange the parent and child.

OR

Restore the min-heap property if violated

 General strategy is percolate up (or bubble up): if the
parent of the element is larger than the element, then
interchange the parent and child.

19

12 16

41 7

19

12 16

41 7 17

19

12 17

41 7 16

Insert 17

swap

Percolate up to maintain the

heap property

DELETION

 Delete max

 Copy the last number to the root (overwrite the

maximum element stored there).

 Restore the max heap property by percolate down.

 Delete min

 Copy the last number to the root (overwrite the

minimum element stored there).

 Restore the min heap property by percolate down.

HEAP SORT

A sorting algorithm that works by first organizing

the data to be sorted into a special type of binary tree

called a heap

PROCEDURES ON HEAP

 Heapify

 Build Heap

 Heap Sort

HEAPIFY
 Heapify picks the largest child key and compare it to the

parent key. If parent key is larger than heapify quits,

otherwise it swaps the parent key with the largest child

key. So that the parent is now becomes larger than its

children.

Heapify(A, i)

{

l left(i)

r right(i)

if l <= heapsize[A] and A[l] > A[i]

then largest l

else largest i

if r <= heapsize[A] and A[r] > A[largest]

then largest r

if largest != i

then swap A[i] → A[largest]

Heapify(A, largest)

}

BUILD HEAP

 We can use the procedure 'Heapify' in a bottom-up fashion

to convert an array A[1 . . n] into a heap. Since the

elements in the subarray A[n/2 +1 . . n] are all leaves, the

procedure BUILD_HEAP goes through the remaining

nodes of the tree and runs 'Heapify' on each one. The

bottom-up order of processing node guarantees that the

subtree rooted at children are heap before 'Heapify' is run

at their parent.

Buildheap(A)

{

heapsize[A] length[A]

for i |length[A]/2 //down to 1

do Heapify(A, i)

}

HEAP SORT ALGORITHM

 The heap sort algorithm starts by using procedure BUILD-

HEAP to build a heap on the input array A[1 . . n]. Since

the maximum element of the array stored at the root A[1],

it can be put into its correct final position by exchanging it

with A[n] (the last element in A). If we now discard node n

from the heap than the remaining elements can be made

into heap. Note that the new element at the root may

violate the heap property. All that is needed to restore the

heap property.

Heapsort(A)

{

Buildheap(A)

for i length[A] //down to 2

do swap A[1] → A[i]

heapsize[A] heapsize[A] - 1

Heapify(A, 1)

}

Example: Convert the following array to a heap

16 4 7 1 12 19

Picture the array as a complete binary tree:

16

4 7

121 19

16

4 7

121 19

16

4 19

121 7

16

12 19

41 7

19

12 16

41 7

swap

swap

swap

HEAP SORT

 The heapsort algorithm consists of two phases:

- build a heap from an arbitrary array

- use the heap to sort the data

 To sort the elements in the decreasing order, use a min heap

 To sort the elements in the increasing order, use a max heap

19

12 16

41 7

EXAMPLE OF HEAP SORT

19

12 16

41 7

1912 16 1 4 7

Array A
Sorted:

Take out biggest

Move the last element

to the root

12 16

41

7

1912 16 1 47

Array A
Sorted:

HEAPIFY()

swap

12

16

41

7

191216 1 47

Array A
Sorted:

12

16

41

7

1912 161 47

Array A
Sorted:

Take out biggest

Move the last element

to the root

12

4

1

7

1912 1614 7

Array A
Sorted:

12

4

1

7

1912 1614 7

Array A
Sorted:

HEAPIFY()

swap

12

4

1

7

1912 1614 7

Array A
Sorted:

12

4

1

7

1912 1614 7

Array A
Sorted:

Take out biggest

Move the last

element to the

root

4

1

7

1912 161 4 7

Array A
Sorted:

swap

4 1

7

1912 16147

Array A
Sorted:

4 1

7

1912 161 4 7

Array A
Sorted:

Move the last

element to the

root

Take out biggest

4

1

1912 1614 7

Array A
Sorted:

HEAPIFY()

swap

4

1

1912 161 4 7

Array A
Sorted:

Move the last

element to the

root

Take out biggest

1

1912 161 4 7

Array A
Sorted:

Take out biggest

1912 161 4 7

Sorted:

TIME ANALYSIS

 Build Heap Algorithm will run in O(n) time

 There are n-1 calls to Heapify each call requires

O(log n) time

 Heap sort program combine Build Heap program

and Heapify, therefore it has the running time of

O(n log n) time

 Total time complexity: O(n log n)

COMPARISON WITH QUICK SORT AND

MERGE SORT

 Quick sort is typically somewhat faster, due to better cache

behavior and other factors, but the worst-case running time

for quick sort is O (n2), which is unacceptable for large data

sets and can be deliberately triggered given enough

knowledge of the implementation, creating a security risk.

 The quick sort algorithm also requires Ω (log n) extra

storage space, making it not a strictly in-place algorithm.

This typically does not pose a problem except on the

smallest embedded systems, or on systems where memory

allocation is highly restricted. Constant space (in-place)

variants of quick sort are possible to construct, but are

rarely used in practice due to their extra complexity.

COMPARISON WITH QUICK SORT AND

MERGE SORT (CONT)

 Thus, because of the O(n log n) upper bound on heap sort’s

running time and constant upper bound on its auxiliary

storage, embedded systems with real-time constraints or

systems concerned with security often use heap sort.

 Heap sort also competes with merge sort, which has the

same time bounds, but requires Ω(n) auxiliary space,

whereas heap sort requires only a constant amount. Heap

sort also typically runs more quickly in practice. However,

merge sort is simpler to understand than heap sort, is a

stable sort, parallelizes better, and can be easily adapted to

operate on linked lists and very large lists stored on slow-

to-access media such as disk storage or network attached

storage. Heap sort shares none of these benefits; in

particular, it relies strongly on random access.

POSSIBLE APPLICATION

 When we want to know the task that carry the

highest priority given a large number of things to do

 Interval scheduling, when we have a lists of certain

task with start and finish times and we want to do as

many tasks as possible

 Sorting a list of elements that needs and efficient

sorting algorithm

CONCLUSION

 The primary advantage of the heap sort is its

efficiency. The execution time efficiency of the

heap sort is O(n log n). The memory efficiency of

the heap sort, unlike the other n log n sorts, is

constant, O(1), because the heap sort algorithm is

not recursive.

 The heap sort algorithm has two major steps. The

first major step involves transforming the

complete tree into a heap. The second major step

is to perform the actual sort by extracting the

largest element from the root and transforming

the remaining tree into a heap.

